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Abstract

Although some investigations such as buckling and free vibration of composite sandwich beams have
been done analytically, very few analytical work about the forced vibration of composite sandwich beams
can be found in the literature. In our study, we get the closed-form solution for the free vibration problems
and derive an orthogonality relation consisting the effects of rotary inertia and shear deformation. Unlike
the usual orthogonality relation for shallow beams in which the modal shapes are the shapes of deflections
corresponding to the natural frequencies, the relation for the composite sandwich beams cannot stand
without including the rotation angles. Through the establishment of the orthogonality relation, the forced
vibration problems can then be solved by modal analysis. The analytical solution of the forced vibration is
useful for the study of vibration suppression. In this study we investigate smart composite sandwich beams
with surface bonded piezoelectric sensors and actuators. By combining the present vibration analysis with
the classical optimal control method, an observed-state feedback control system for the composite
sandwich beams is designed. To show the importance of considering the effects of rotary inertia and shear
deformation on the natural frequencies and mode shapes of composite sandwich beams, several illustrative
examples are done. Numerical examples of vibration suppression of cantilevered composite sandwich
beams are also implemented, which show that their first few vibration modes are successfully controlled.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Because sandwich construction has many advantages over the conventional structural
constructions such as high bending stiffness, good weight savings, good surface finish, etc., it
has been used in aeronautical applications for more than 50 years. Nowadays, the use of sandwich
construction is further enhanced by the introduction of the laminated composites as the faces of
sandwich panels. Therefore, it is desirable to have further studies about the composite sandwich
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structures after knowing their related mechanical behaviors of the composite laminates [1–7].
Fundamental mathematical modelling about the analysis of composite sandwich structures
can be found in some published textbooks such as [8–10]. Recently, Noor, et al. [11] collected
several published works in their review about the computational models for sandwich panels and
shells.
My co-workers and I developed a mathematical model for the buckling and vibration of

laminated composite sandwich plates and beams [12–14]. The main difference of our modelling
with that of the conventional laminated composite structures is the consideration of transverse
shear deformation and rotary inertia. With this modelling, closed-form solutions for the free
vibration of composite sandwich beams under various boundary conditions are obtained in this
paper, which can also be specialized to their associated problems of composite laminated beams.
Moreover, an orthogonality relation consisting the effects of rotary inertia and shear deformation
has also been derived. Unlike the usual orthogonality relation for shallow beams in which the
modal shapes are the shapes of deflections corresponding to the natural frequencies, the relation
for the composite sandwich beams cannot stand without including the rotation angles. Through
the orthogonality relation, the mechanical responses of forced vibration can then be found by
modal analysis.
Due to the rapid development of intelligent space structure and mechanical systems, advanced

structures with integrated self-monitoring and control capabilities are increasingly becoming
important. It is also well known that piezoelectric materials produce an electric field when
deformed and undergo deformation when subjected to an electric field. Due to this intrinsic
coupling phenomenon, piezoelectric materials are widely used as sensors and actuators in
intelligent advanced structure design. With this consideration, the sensor and actuator equations
were derived based upon our analytical expressions of forced vibration. Employing this result into
the classical optimal control algorithm, an observed-state feedback control system is designed and
implemented in this paper.

2. Composite sandwich beams

A mathematical model for the mechanical analysis of delaminated composite sandwich plates
and beams was proposed by Hwu and Hu [12] for the buckling problems and by Hu and Hwu [13]
for the vibration problems. According to their model, the equations of motion for the composite
sandwich beams with the effects of rotary inertia and shear deformation included can be expressed
as (see Fig. 1)

@Qx

@x
þ p ¼ rh

@2w

@t2
;

@Mx

@x
¼ Qx þ I

@2bx

@t2
; ð1aÞ

where

Qx ¼ Sgxz; Mx ¼ D
@bx

@x
; bx ¼ gxz �

@w

@x
: ð1bÞ

p; Qx and Mx represent the transverse distributed load, transverse shear stress resultant and
bending moment, respectively. w; gxz and bx denote the transverse deflection, transverse shear
strain and rotation angle. I ;r and h are, respectively, the moment of inertia (with respect to the
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midplane), mass density and thickness. S and D are the transverse shear stiffness and bending
stiffness whose values can be calculated from the material and section properties of the core and
faces of the composite sandwich beams. The mass density r for the sandwich may be
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Fig. 1. A composite sandwich beam with piezoelectric sensors and actuators.
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approximated by the general mixture rule [15]

r ¼ ðrchc þ 2rf hf Þ=ðhc þ 2hf Þ; ð2aÞ

where rc and rf are, respectively, the mass density of core and faces, and hc and hf are,
respectively, the thickness of core and faces. The moment of inertia I for rectangular cross section
with unit width is I ¼ rh3=12:
By considering the non-uniform transverse shear stress distribution across the core thickness,

the transverse shear stiffness S can be set to [15]

S ¼ ahcGc; ð2bÞ

where Gc is the effective shear modulus of the core; a is the shear coefficient and is selected to be
a ¼ 5=6 for rectangular cross-section. The bending stiffness D can be calculated from [12]

D ¼ D11 �
B211
A11

; ð2cÞ

where A11;B11 and D11 are, respectively, the 11 component of the extensional, coupling and
bending stiffnesses of the composite sandwiches [15]. Note that the stiffnesses are calculated based
upon the midsurface of the sandwich instead of the midsurface of the face laminates [12].
Substituting Eq. (1b) into Eq. (1a) and expressing the equations in terms of the deflection w and

the slope bx; we get

S
@bx

@x
þ

@2w

@x2

� �
þ p ¼ rh

@2w

@t2
; D

@2bx

@x2
¼ S bx þ

@w

@x

� �
þ I

@2bx

@t2
: ð3Þ

From the first equation of Eq. (3), we can further express @bx=@x in terms of w: Substituting this
expression into the partial differential with respect to x of the second equation of Eq. (3), we
obtain the equation of motion in terms of the transverse deflection only, which is

D
@4w

@x4
� I þ

rhD

S

� �
@4w

@x2@t2
þ
rhI

S

@4w

@t4
þ rh

@2w

@t2
¼ p þ

I

S

@2p

@t2
�

D

S

@2p

@x2
: ð4Þ

After solving the transverse deflection w through the equation of motion (4) and its associated
boundary and initial conditions, the slope bx can be obtained by integrating Eq: ð3Þ1 with respect
to x: The transverse shear strain gxz can then be obtained from the third equation of Eq. (1b).

3. Free vibration

To know the natural frequency and its associated mode of vibration of the composite sandwich
beams, we consider the case that the external load pðx; tÞ ¼ 0; i.e., the problems of free vibration.
To find the natural modes of vibration, the usual way is the method of separation of variables. By
this method we write the deflection wðx; tÞ as a product of a functionW ðxÞ of the spatial variables
only and a function f ðtÞ depending on time only. Furthermore, because of free vibration f ðtÞ is
harmonic and of frequency o: Thus,

wðx; tÞ ¼ W ðxÞeiot: ð5Þ
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Through the use of Eq. (5), the equation of motion (4) can easily be reduced to an ordinary
differential equation and the general solutions for W ðxÞ can be obtained as

W ðxÞ ¼ c1 cosh lx þ c2 sinh lx þ c3 cos mx þ c4 sin mx; ð6aÞ

where

l2 ¼
o2

2D
ð� #I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#I2 þ 4 #mD

p
Þ; m2 ¼

o2

2D
ð #I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#I2 þ 4 #mD

p
Þ ð6bÞ

and

#I ¼ I þ
rhD

S
; #m ¼

rh

o2
�
rhI

S
: ð6cÞ

The above solutions (6a–c) are valid when #m > 0; or say o2oS=I ; which is usually true for the
transverse shear deformation neglected since in that case the shear stiffness S is assumed to be
infinite. For the case of #mo0; similar results can be obtained and will not be discussed in this
paper. To find the natural frequency and the mode shape, we need to know the boundary
conditions of the problems considered. The usual boundary conditions encountered in the
vibration of the composite sandwich beams are

ðiÞ Simply supported ends : w ¼ Mx ¼ 0 at x ¼ 0; l; ð7aÞ

ðiiÞ Clamped2clamped ends : w ¼ bx ¼ 0 at x ¼ 0; l; ð7bÞ

ðiiiÞ Clamped2free ends : w ¼ bx ¼ 0 at x ¼ 0 and Qx ¼ Mx ¼ 0 at x ¼ l: ð7cÞ

Substituting the general solution (6a) into the boundary conditions (7a–c), we can obtain the
natural frequency and mode shape of the composite sandwich beams. Although these explicit
solutions have been shown in our previous work [13] as one of the special cases of the delaminated
composite sandwich beams, by careful check we found that there are some errors in our previous
solutions. Due to the importance of these solutions to our following discussions, we now like to
list these solutions as follows.
(i) Simply supported ends:

mj l ¼ jp; ð8aÞ

WjðxÞ ¼ sinðmjxÞ; j ¼ 1; 2;y : ð8bÞ

(ii) Clamped–clamped ends:

2ð1� cosh lj l cos mj lÞ þ gj �
1

gj

 !
sinh lj l sin mj l ¼ 0; ð9aÞ

WjðxÞ ¼ cosh ljx � cos mjx � ajðsinh ljx � gj sin mjxÞ; j ¼ 1; 2;y : ð9bÞ

(iii) Clamped–free ends:

2þ
lj

mj

�
mj

lj

 !
sin mj l sinh lj l þ

gjlj

mj

þ
mj

gjlj

 !
cos mj l cosh lj l ¼ 0; ð10aÞ

WjðxÞ ¼ cosh ljx � cos mjx � bjðsinh ljx � gj sin mjxÞ; j ¼ 1; 2;y ð10bÞ
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where

aj ¼
cosh lj l � cos mj l

sinh lj l � gj sin mj l
; bj ¼

mj sinh lj l � lj sin mj l

mj cosh lj l þ gjlj cos mj l
;

gj ¼
lj þ rho2j =ljS

mj � rho2j =mjS
: ð10cÞ

In the case of the laminated composite beams that can be considered as a sandwich without
core, the thickness of the beam is usually small compared to its length. Therefore, it is reasonable
to neglect the effects of rotary inertia and shear deformation for this special but common case.
The natural frequency and mode shape of the laminated composite beams can be then obtained by
specializing Eqs. ((8)–(10)) with I ¼ 0 and S-N:

Orthogonality condition: If the family of natural vibration mode shapes WjðxÞ can constitute a
complete set of orthonormal modes, most of the vibration problems can be solved by modal
analysis through the use of the expansion theorem [16]. However, due to the complexity of the
partial differential equation (4) which the deflection mode shape should satisfy, it is very difficult
to prove that they are orthogonal to each other. Even the direct use of the solutions shown in
Eqs. ((8)–(10)) cannot prove that the natural mode WjðxÞ only will constitute a complete
orthonormal set. This difficulty leads us to think that maybe the orthogonal set contains not only
the deflection but also the slope angle due to the inclusion of the effects of rotary inertia and shear
deformation. With this consideration we now deal with Eq. (3) instead of Eq. (4). By assuming

wðx; tÞ ¼ W ðxÞeiot; bxðx; tÞ ¼ BðxÞeiot; ð11Þ

and introducing Eq. (11) into Eq. (3) with p ¼ 0; we obtain

�rho2W ðxÞ ¼ SðB0ðxÞ þ W 00ðxÞÞ; �Io2BðxÞ ¼ DB00ðxÞ � SBðxÞ � SW 0ðxÞ: ð12Þ

Eq. (12) contains two second order homogeneous ordinary differential equations, which must be
supplemented by four boundary conditions, i.e., two boundary conditions for each end. Usually,
the boundary condition is either displacement-prescribed or forced-prescribed or mixed. For
homogeneous boundary conditions, they may be expressed as (i) w ¼ 0 or Qx ¼ 0 and (ii) bx ¼ 0
or Mx ¼ 0: Through the use of relations (1b) and (11), we have

ðiÞ W ðxÞ ¼ 0 or BðxÞ þ W 0ðxÞ ¼ 0; ð13aÞ

ðiiÞ BðxÞ ¼ 0 or B0ðxÞ ¼ 0: ð13bÞ

Different combinations may now provide us four different types of end conditions. They are

ðiÞ Fixed end: w ¼ bx ¼ 0 which leads to W ðxÞ ¼ BðxÞ ¼ 0: ð14aÞ

ðiiÞ Free end: Qx ¼ Mx ¼ 0 which leads to BðxÞ þ W 0ðxÞ ¼ B0ðxÞ ¼ 0: ð14bÞ

ðiiiÞ Hinged end: w ¼ Mx ¼ 0 which leads to W ðxÞ ¼ B0ðxÞ ¼ 0: ð14cÞ

ðivÞ Moving end: Qx ¼ bx ¼ 0 which leads to BðxÞ þ W 0ðxÞ ¼ BðxÞ ¼ 0: ð14dÞ

By a simple mathematical manipulation, the natural frequencies and modes of vibration for
each different boundary condition can be obtained, which can be proved to be exactly the same as
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those shown in Eqs. ((8)–(10)). The natural mode shapes of rotation angles, BjðxÞ; which are not
provided in Eqs. ((8)–(10)) can be obtained by using Eq. (12)1 with the results ofWjðxÞ obtained in
Eqs. ((8)–(10)). They are

(i) simply supported ends:

BjðxÞ ¼
rho2j
mjS

� mj

 !
cos mjx; ð15aÞ

(ii) clamped–clamped ends:

BjðxÞ ¼ �
rho2j
ljS

� lj

 !
sinh ljx þ

rho2j
mjS

� mj

 !
sin mjx

þ
ajrho2j
ljS

þ ajlj

 !
cosh ljx þ

ajgjrho2j
mjS

� ajgjmj

 !
cos mjx; ð15bÞ

(iii) clamped–free ends:

BjðxÞ ¼ �
rho2j
ljS

� lj

 !
sinh ljx þ

rho2j
mjS

� mj

 !
sin mjx

þ
bjrho2j
ljS

þ bjlj

 !
cosh ljx þ

bjgjrho2j
mjS

� bjgjmj

 !
cos mjx: ð15cÞ

Let oi and oj be the two distinct natural frequencies and WiðxÞ;BiðxÞ and WjðxÞ;BjðxÞ be the
corresponding natural modes of vibration resulting from the solution of the equations of motion
(12) and its associated boundary conditions (13). Consider Eq. (12) corresponding to oi;WiðxÞ
and BiðxÞ: If we multiply Eq. (12)1 by WjðxÞ and Eq. (12)2 by BjðxÞ; add them together and
integrate both sides of the equation over the beam length L; we obtain

� o2i

Z L

0

ðrhWiðxÞWjðxÞ þ IBiðxÞBjðxÞÞ dx

¼
Z L

0

½SðB0
iðxÞ þ W 00

i ðxÞÞWjðxÞ þ ðDB00
i � SBiðxÞ � SW 0

i ðxÞÞBjðxÞ� dx: ð16Þ

Similarly, another equation can be obtained from Eq. (16) by interchanging the subscripts i and j:
Subtracting these two equations, we get

ðo2i � o2j Þ
Z L

0

ðrhWiðxÞWjðxÞ þ IBiðxÞBjðxÞÞ dx

¼
Z L

0

S½B0
jðxÞWiðxÞ þ W 00

j ðxÞWiðxÞ � B0
iðxÞWjðxÞ � W 00

i ðxÞWjðxÞ�

þ ½ðDB00
j ðxÞ � SBjðxÞ � SW 0

j ðxÞÞBiðxÞ � ðDB00
i ðxÞ � SBiðxÞ � SW 0

i ðxÞÞBjðxÞ� dx: ð17Þ
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By means of integration by parts, for example,Z L

0

B0
jðxÞWiðxÞ dx ¼ WiðxÞBjðxÞ

����
L

0

�
Z L

0

BjðxÞW 0
i ðxÞ dx; ð18Þ

the right-hand side of Eq. (17) can be rewritten as

fS½WiðxÞðBjðxÞ þ W 0
j ðxÞÞ � WjðxÞðBiðxÞ þ W 0

i ðxÞÞ�

þ D½BiðxÞB0
jðxÞ � BjðxÞB0

iðxÞ�gj
L
0 : ð19Þ

The substitution of the end conditions (13) now makes Eq. (19) equivalent to zero. Thus, Eq. (17)
reduces to

ðo2i � o2j Þ
Z L

0

ðrhWiðxÞWjðxÞ þ IBiðxÞBjðxÞÞ dx ¼ 0 ð20Þ

or R L

0 ðrhWiðxÞWjðxÞ þ IBiðxÞBjðxÞÞ dx ¼ 0; when oiaoj;

a0; when oi ¼ oj:
ð21Þ

Through normalization, (21) can be combined intoZ L

0

ðrhWiðxÞWjðxÞ þ IBiðxÞBjðxÞÞ dx ¼ dij; ð22Þ

where dij is the Kronecker delta. Unlike the usual orthogonality conditions for the cases that the
effects of rotary inertia and shear deformation are neglected, the orthogonality found in Eq. (22)
shows that the complete set includes not only the mode shapes of the deflection but also the slope
angle.

4. Forced vibration

To study the forced vibration problem, one usually starts from the equation of motion. In this
paper, two equivalent expressions are provided. One is two equations of Eq. (3) which is based on
two basic functions w and bx; and the other is a single equation of Eq. (4) which is based on w:
Without deliberative consideration, most of the studies may choose the single equation (4) as the
basic equation of motion. However, due to the appearance of the transverse shear stiffness S and
the moment of inertia I ; it is not easy to apply the usual approach of modal analysis to decouple
the equation of motion into a set of uncoupled differential equations. From the discussion of the
previous section, we see that the orthogonality condition (22) contains not only the mode shapes
of the transverse deflection but also the mode shapes of the slope. This orthogonality condition
gives us a great hint that the forced vibration analysis should start from the two-equations of
Eq. (3) instead of the single equation of Eq. (4). With this understanding, we may now employ the
expansion theorem to obtain the system response by modal analysis. Using the expansion theorem
we write the solution of Eq. (3) as a superposition of the natural modes WjðxÞ and BjðxÞ
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multiplying corresponding time-dependent generalized coordinates ZjðtÞ: Hence,

wðx; tÞ ¼
XN
j¼1

WjðxÞZjðtÞ; bxðx; tÞ ¼
XN
j¼1

BjðxÞZjðtÞ ð23Þ

and introducing Eq. (23) into Eq. (3), we obtain

rh
XN
j¼1

WjðxÞ.ZjðtÞ ¼
XN
j¼1

SðB0
jðxÞ þ W 00

j ðxÞÞZjðtÞ þ pðx; tÞ;

I
XN
j¼1

BjðxÞ.ZjðtÞ ¼
XN
j¼1

ðDB0
jðxÞ � SBjðxÞ � SW 0

j ðxÞÞZjðtÞ: ð24Þ

Employing the results of Eq. (12) in Eq. (24), we get

rh
XN
j¼1

WjðxÞ.ZjðtÞ ¼ �
XN
j¼1

rho2j WjðxÞZjðtÞ þ pðx; tÞ;

I
XN
j¼1

BjðxÞ.ZjðtÞ ¼ �
XN
j¼1

Io2j BjðxÞZjðtÞ: ð25Þ

Multiplying Eq. (25)1 byWiðxÞ and Eq. (25)2 by BiðxÞ; adding them together and integrating both
sides of the equation over the beam length L; we obtain

XN
j¼1

ð.ZjðtÞ þ o2j ZjðtÞÞ
Z L

0

ðrhWjðxÞWiðxÞ þ IBjðxÞBiðxÞÞ dx

( )

¼
Z L

0

pðx; tÞWiðxÞ dx: ð26Þ

Through the use of the orthogonality condition found in Eq. (22), an infinite set of uncoupled

second order ordinary differential equation system is obtained as

.ZjðtÞ þ o2j ZjðtÞ ¼ NjðtÞ; j ¼ 1; 2;y; ð27aÞ

where NjðtÞ denotes a generalized force associated with the generalized coordinate ZjðtÞ and is
related to the transverse distributed load q by

NjðtÞ ¼
Z L

0

pðx; tÞWjðxÞ dx: ð27bÞ

5. Piezoelectric sensors and actuators

To suppress the vibration of the composite sandwich beams, we consider the popular way by
bonding piezoelectric sensors and actuators on the surfaces of the beam. It is well known that
piezoelectric materials produce an electric field when deformed and undergo deformation when
subjected to an electric field. Due to this intrinsic coupling phenomenon, piezoelectric materials
are widely used as the sensors and actuators in intelligent advanced structure design. The
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piezoelectric sensors can respond to structural vibration and generate output voltage due to the
direct piezoelectric effect. On the other hand, the actuators can induce force and moment and
control the system due to the converse piezoelectric effect. The piezoelectric properties can be
described as a constitutive relation which characterizes the coupling effects between mechanical
and electrical properties as follows:

Di ¼ eikek þ eS
ij Ej; ek ¼ SE

il sl þ djkEj; i; j ¼ 1; 2; 3; k; l ¼ 1; 2;y; 6; ð28Þ

where sl and ek represent the stress and strain, respectively; Di and Ej represent the electric
displacement and electric field, respectively. eik; eS

ij ; SE
il and djk represent the piezoelectric stress

constant, electric permittivity, elastic compliance and piezoelectric strain coefficient, respectively.
Note that in the following derivation of sensor and actuator equations, the assumption of the

perfect bond between the piezoelectric sensors/actuators and the composite sandwich beams has
been made. Therefore, the validity of our results will depend on this assumption. In real
applications, this assumption may be influenced by the flexibility/rigidity of sensors and actuators.
Hence, if a piezo-ceramics is selected to be an actuator, due to its significant large rigidity, the
length of the actuator should be small enough to conform to the perfect bond assumption.

Sensor equation: If the composite sandwich beams deform under a certain external load, the
axial strain e1 on the surface of piezoelectric sensor which was attached on the beam will be
e1 ¼ zs@bx=@x where zs is the distance from the piezoelectric sensor to the mid-surface. By
Eq: ð28Þ1; we know this strain will induce an electric displacement D3 in the thickness direction as
D3 ¼ e31e1: The electric charge of the sensor region Os corresponding to this electric displacement
is qs ¼

R
Os

D3 dx: By using Eq: ð23Þ2 for the expansion of the rotation angle, the sensor charge can
finally be expressed as a linear combination of the generalized co-ordinates Zj; which is

qs ¼
XN
j¼1

cjZjðtÞ; cj ¼ zse31

Z
Os

B0
jðxÞ dx: ð29Þ

In the case of several sensors attached on the beam, the electric charge qðiÞ
s over each sensor region

OðiÞ
s can be expressed as

qðiÞ
s ¼

XN
j¼1

c
ðiÞ
j ZjðtÞ; c

ðiÞ
j ¼ zse31

Z
OðiÞ

s

B0
jðxÞ dx; i ¼ 1;y; ns; ð30Þ

where ns is the number of the sensors.
Actuator equation: To suppress the vibration, a control force is actuated through the

piezoelectric actuators. By applying a voltage Va in the thickness direction, an electric field
E3 ð¼ Va=ta; where ta is the thickness of the piezoelectric actuators) is generated, which will
induce an axial strain ea

1 ¼ d31E3 on the piezoelectric actuators. Due to the assumption of the
perfect bonding, the axial strain of the composite sandwich beams caused by the deformation of
the piezoelectric actuator may be written as e1 ¼ zea

1=za; where za is the distance from the
piezoelectric actuator to the mid-surface and z is the co-ordinate in the thickness direction. Note
that the linear variation of e1 with respect to z is the basic assumption of the formulation provided

ARTICLE IN PRESS

C. Hwu et al. / Journal of Sound and Vibration 272 (2004) 1–2010



in Eq. (1). The bending moment Ma
x induced by the actuator can therefore be calculated by

Ma
x ¼

Xn

k¼1

Z hk

hk�1

sðkÞ1 z dz ¼
Xn

k¼1

Z hk

hk�1

ð %QðkÞ
11 e1Þz dz

¼
Xn

k¼1

Z hk

hk�1

%Q
ðkÞ
11

z

za

ea
1

� �
z dz ¼ kaVa; ð31aÞ

where

ka ¼
D11d31

zata

: ð31bÞ

The equivalent transverse distributed load pa can then be obtained by using the relation p ¼
�@2Mx=@x2; i.e.,

Pa ¼ �@2ðkaVaÞ=@x2: ð32Þ

By substituting Eq. (32) into Eq. (27b), the generalized force NjðtÞ induced by the applied
voltage VaðtÞ can be found to be

NjðtÞ ¼ bjVaðtÞ; bj ¼
Z
Oa

ka

@2WjðxÞ
@x2

dx; ð33Þ

where Oa is the actuator region that the voltage VaðtÞ applies. In the case of several actuators
attached on the beam, the generalized force NjðtÞ induced by all the applied voltage V ðiÞ

a ðtÞ over the
region OðiÞ

a ; i ¼ 1; 2;y; na; is

NjðtÞ ¼
Xna

i¼1

b
ðiÞ
j V ðiÞ

a ðtÞ; b
ðiÞ
j ¼

Z
OðiÞ

a

ka

@2WjðxÞ
@x2

dx: ð34Þ

As we mention at the beginning of this section, the validity of the sensor and actuator equations
will depend on the assumption of the perfect bond between the sensors/actuators and the
composite sandwich beams. Therefore, if the sensors and/or the actuators are rigid, the regions
OðiÞ

s and OðiÞ
a used in Eqs. (30) and (34) should be small relative to the beam length.

6. Vibration suppression

In control, it is customary to work with state equations instead of configuration equations (27).
By applying the generalized force given in Eq. (34) and the sensor charge obtained in Eq. (30), and
considering the process and measurement noise vðtÞ and sðtÞ; the state space equation
corresponding to Eqs. (27), (30) and (34) for the composite sandwich beams can be written as

’xðtÞ ¼ AxðtÞ þ BuðtÞ þ vðtÞ;

yðtÞ ¼ CxðtÞ þ sðtÞ; ð35aÞ

ARTICLE IN PRESS

C. Hwu et al. / Journal of Sound and Vibration 272 (2004) 1–20 11



where

xðtÞ ¼

x1ðtÞ

x2ðtÞ

x3ðtÞ

^

8>>><
>>>:

9>>>=
>>>;
; uðtÞ ¼

V ð1Þ
a

V ð2Þ
a

^

V ðnaÞ
a

8>>>><
>>>>:

9>>>>=
>>>>;
; yðtÞ ¼

qð1Þ
s

qð2Þ
s

^

qðnsÞ
s

8>>>><
>>>>:

9>>>>=
>>>>;
; ð35bÞ

A ¼ diagðAjÞ; B ¼

B1

B2

B3

^

8>>><
>>>:

9>>>=
>>>;
; C ¼ ½C1 C2 C3 ?� ð35cÞ

and

xjðtÞ ¼
ZjðtÞ

’ZjðtÞ

( )
; Aj ¼

0 1

�o2j 0

" #
; Bj ¼

0 0 ? 0

b
ð1Þ
j b

ð2Þ
j ? b

ðnaÞ
j

" #
;

Cj ¼

c
ð1Þ
j 0

c
ð2Þ
j 0

^ ^

c
ðnsÞ
j 0

2
666664

3
777775: ð35dÞ

The problem now becomes how to apply the control voltage uðtÞ to suppress the vibration and
how to estimate the full state vector xðtÞ by measuring the sensor output yðtÞ: An effective
approach to the control of structures is feedback control. In general, the non-linear distributed
control is not feasible, so that a linear control is usually considered. That is, the control force is
linear proportional to the deflection and/or its velocity. In this paper, we consider

uðtÞ ¼ �G #xðtÞ; ð36Þ

where #xðtÞ is an estimated state which is introduced to estimate the full state vector xðtÞ from the
sensor output yðtÞ; G is the control gain which should be determined such that the motion of the
structure approaches zero asymptotically.
A state estimator also known as an observer for Eq. (35) is assumed to have the form

’#xðtÞ ¼ A #xðtÞ þ BuðtÞ þ #KðyðtÞ � C #xðtÞÞ; ð37Þ

where #K is the Kalman filter gain matrix and can be determined by minimizing the expected value,
Efðx� #xÞTðx� #xÞg: For steady state case, the optimal observer gain matrix #K has been found to
be [16]

#K ¼ PCTS�1; ð38aÞ

where the matrix P satisfying the Riccati equation

APþ PAT þ V� PCTS�1CP ¼ 0: ð38bÞ
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VðtÞ and SðtÞ are the intensities of assumed white noise vðtÞ and sðtÞ so that the correlation matrices
have the forms Efvðt1ÞvTðt2Þg ¼ Vðt1Þdðt2 � t1Þ and Efsðt1ÞsTðt2Þg ¼ Sðt1Þdðt2 � t1Þ; respectively.
The optimal control gain G is then determined by minimizing the performance measure J ¼R tf

0 ðx
TQxþ uTRuÞ dt in which tf is the final time, Q and R are, respectively, the state weight

matrix and control weight matrix. For a more rapid vibration reduction a larger value of Q
can be selected, while for a smaller energy consumption a larger value of R can be selected.
With an appropriate selection of the weight matrices, the optimal control gain can be found
as [16]

G ¼ R�1BTK; ð39aÞ

where K satisfies the steady state matrix Riccati equation, i.e.,

ATKþ KAþQ� KBR�1BTK ¼ 0: ð39bÞ

Substituting Eq. (36) into Eq. (37) with the control gain G given in Eq. (39), the estimated state
#xðtÞ can be computed by solving the ordinary differential equations (37). The control voltage uðtÞ
calculated by Eq. (36) is then applied to suppress the vibration. The actual state xðtÞ can therefore
be calculated from Eq: ð35aÞ1:
The characteristics of the control system can also be described in the following way. First, we

obtain the observer error equation by subtracting Eq. (37) from Eq: ð35aÞ1: Then, with uðtÞ given
in Eq. (36) we rewrite Eq: ð35aÞ1 in terms of the actual state xðtÞ and the error eðtÞ ¼ xðtÞ � #xðtÞ:
By combining these two equations, the dynamics of the observed-state feedback control system
can now be described as

’xðtÞ

’eðtÞ

( )
¼

A� BG BG

0 A� #KC

" #
xðtÞ

eðtÞ

( )
þ

vðtÞ

vðtÞ � #KsðtÞ

( )
: ð40Þ

By solving the ordinary differential equation system (40), the dynamic response xðtÞ of the control
system can easily be calculated. The associated transverse deflection w and rotation angle bx can
then be obtained from Eq. (23).
The control procedure discussed in this section is called an LQG/LTR (linear quadratic

Gaussian with loop transfer recovery) control method which uses a Kalman filter as an observer
and a controller that minimizes an objective function of quadratic form [17]. A block diagram of
the closed-loop LQG/LTR system with a state estimator is shown in Fig. 2.

7. Numerical examples and discussions

In order to design an LQG/LTR controller, the natural frequencies and mode shapes provided
by Eqs. (8)–(10) and (15) should be verified. Several examples have been done and compared with
the existing results published in the literature [18]. The comparison shows that our solutions
presented in Eqs. (8)–(10) and (15) are correct. To save the space of this paper, only one example
concerning the free vibration of cantilevered isotropic sandwich beam is shown below. The
material properties, dimensions, and cross-sectional data for the isotropic sandwich beams are
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taken from Ref. [19], which are

Ef ¼ 68:9 GPa; hf ¼ 0:4572 mm; rf ¼ 2680 kg=m3;

Gc ¼ 0:08274 GPa; hc ¼ 12:7 mm; rc ¼ 32:8 kg=m
3;

l ¼ 0:7112 m:

The comparison of the natural frequencies of our results with those presented in the literature is
shown in Table 1. The results show that they are well agreed each other even they are obtained
from different methods. The merits of our present solutions are that they are analytical
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Fig. 2. A block diagram of closed-loop LQG/LTR system with a state estimator.

Table 1

Comparison of natural frequencies

Mode Ahmed [19] Mead [20] Present

Simply supported end

1 55 56 54

2 — — 212

3 451 459 457

4 — — 770

5 1073 1107 1130

Clamped–free end

1 32 34 32

2 193 202 193

3 499 523 509

4 888 823 923

5 1320 1974 1402
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closed-form solutions which could save us a lot of time in computing the natural frequencies and
vibration modes, and could help us to know the vibration problems more directly from the
mathematical formulae. However, our solutions are not suitable for complicated geometric
problems in which the finite element method shows its power [18].
To show the performance of the LQG/LTR controller designed in this paper for the vibration

suppression of composite sandwich beams, a cantilevered composite sandwich of the type
½0=0=90=90=0=0=core�s is considered. The material properties, dimensions, and cross-sectional
data for the composite sandwich beams are

EL ¼ 130 GPa; ET ¼ 10 GPa; vLT ¼ 0:25; GLT ¼ 4:85 GPa;

rf ¼ 1480 kg=m3; hf ¼ 0:2286 mm;

Gc ¼ 0:08274 GPa; rc ¼ 32:8 kg=m
3; hc ¼ 12:7 mm;

l ¼ 0:7112 m:

Although our analysis presented in Section 5 can be applied to multiple sensors and actuators, for
simplicity of illustration only one sensor and actuator are selected in the following example. The
material used for the sensor is piezo-film (PFS LDT2-028K) and that for the actuator is piezo-
ceramics (Fuji C82). The material properties, locations, and dimensions of the piezoelectric sensor
and actuator are [6]

sensor : e31 ¼ 6:47� 10�2 C=m2; xs ¼ 20 mm; zs ¼ � 6:5786 mm; ls ¼ 20 mm;

ts ¼ 0:028 mm;

actuator : d31 ¼ �260 pC=N; xa ¼ 20 mm; za ¼ 6:5786 mm; la ¼ 20 mm;

ta ¼ 0:4 mm:

The maximum output voltage was limited to 3000 V: The state weight matrix Q and the control
weight matrix R were selected as Q ¼ QaI;R ¼ RaI; where I is the unit matrix and the value of Qa

and Ra were determined by trial-and-error method to most effectively control the beam within the
desired parameters. In our examples, Qa=Ra ¼ 6� 109:
Fig. 3 shows the simulation results of open-loop response and LQG/LTR-controlled response

for initial conditions corresponding to the first mode vibration. By adding the possible noise from
process and measurement, their associated simulation results are shown in Fig. 4 with the
intensities of assumed white noise VðtÞ and SðtÞ selected to be

VðtÞ ¼ v
0 0

0 1

" #
; SðtÞ ¼ s; where v ¼ 10�3 1=s2; s ¼ 10�7 C=m:

The simulation results are obtained from the analytical model developed in this paper with the aid
of MATLAB/Simulink. As can be seen from Figs. 3 and 4, LQG/LTR controller successfully
suppresses the vibration of the composite sandwich beam within 1:5 s:
In Figs. 3 and 4, the LQG/LTR controller is designed based upon the first mode of the

composite sandwich beams because the disturbance to be controlled is excited by the first mode
vibration. However, in the system of composite sandwich beams, there are infinite vibration
modes. If our controller is designed only based upon the first mode, it is then possible to lead a
result that the vibration cannot be suppressed effectively if the initial vibration includes not only
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the first mode deflection. To improve this possible ill-controlled problem, one may design a
controller based upon several vibration modes. To illustrate the performance of this kind of
controller, an example based upon the first five modes is designed and its corresponding result for
the mixed mode initial condition is shown in Fig. 5. Here, the initial condition is given by equal
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Fig. 3. Vibration suppression of the composite sandwich beam with first mode initial condition: (a) tip–displacement

response, (b) control input.
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distribution among the first five modes. The result of Fig. 5 shows that mode 1 LQG/LTR
controller cannot suppress the vibration while first five modes LQG/LTR controller successfully
suppresses the vibration within 1:5 s: To monitor the vibration reduction effects, we use an fast
Fourier transform (FFT) analyzer through which the tip displacement frequency response of the
sandwich beam is plotted in Fig. 6. This figure shows that the LQG/LTR control does not change
the first five natural frequencies but reduces the peak values of the first five modes.
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Fig. 4. Consideration of process and measurement noise: (a) tip–displacement response, (b) control input.
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8. Conclusions

Analytical solutions for the free and forced vibration of composite sandwich beams are
obtained in this paper. In our solutions, the effects of transverse shear deformation and rotary
inertia are considered because the sandwich beams are usually relatively thicker. Based upon the
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Fig. 5. Vibration suppression of the composite sandwich beam with mixed mode initial condition: (a) tip–displacement

response, (b) control input.
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analytical results for the forced vibration, the sensor equation and actuator equation associated
with the surface bonded piezoelectric sensors and actuators are also derived. An LQG/LTR
controller is then designed on the basis of these analytical solutions, in which the Kalman filter has
been used as an observer and the control gain has been determined to minimize a linear quadratic
performance index. The correctness of the natural frequencies and mode shapes provided by our
analytical solutions is verified by comparing with the existing numerical solutions. The
performance of LQG/LTR controller is then studied under various aspects such as consideration
of process and measurement noise, different initial vibration, and design based upon several
modes. All these results show that the simulation obtained from the analytical model developed in
this paper can successfully suppress the vibration of composite sandwich beams.
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